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I. INTRODUCTION 

As the Universe is probed on larger scales, evidence for very large scale structures 

seems to be emerging. Voids, filaments, and walls on scales as large as 100 Mpc have been 

observed in various redshift surveys.’ The existence of these structures, constraints on 

the anisotropies of the microwave background temperature,* and the existence of quasars 

at redshifts larger than 4,3 makes it extremely difficult to understand the origin of large 

scale structure within the framework of the standard gravitational instability theory, i.e, 

cold dark matter with density perturbations coming from inflationary models.“ 

Many of the constraints on structure formation models can be obviated if a mecha- 

nism could be found which allows for density inhomogeneities to appear at a redshift t 

satisfying z,.. > I >> 1 with Sp/p - 1 (here z,.. N 1000 is the redshift at recombination). 

In this case, the perturbations will not affect the CMBR directly (but may have signifi- 

cant indirect effects) yet structure on large scales will have ample time to grow so as to 

satisfy the constraint coming from quasar observations. 

Taking our cue from the fact that sources of density fluctuations may arise from the 

effects of phase transitions, it is interesting to ask whether phase transitions could occur 

at late times (i.e., after decoupling) in such a way as to generate large density fluctu- 

ations. This is not a new idea. Wasserman5 showed that the existence of a first-order 

phase transition at late times could generate large fluctuations due to bubble collisions. 

Hill, Schramm, and Frys proposed the idea of domain wall formation in late-time phase 

transitions in the context of ultra-low-mass pseudo-Nambu-Goldstone bosons that can 

readily occur in a wide class of models. ‘Asia The implications of late time phase transitions 

with soft domain walls has been a subject of considerable activity in recent years.” 

Press, Ryden, and Spergel considered the possibility of a slow-roll transition in a soft- 

boson mode&ii which not only drove structure formation, but also implied that the dark 
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matter is the residual oscillations of the field about the potential minimum. Schramm 

and Fulle+ have also considered such scenarios within the context of Majoron mod&l3 

These different approaches have a common theme: Ultra-low mass particles, typically 

spin4 bosons, are a generic component of all such models. 

The most familiar spin-0 particles occuring in nature are the n mesons. The scale 

of the masses of the pions in comparison to the scale of nucleon mass is small, rnz < 

mk. This is well understood: the pions are pseudo-Nambu-Goldstone bosom (pNGB’s) 

associated with the dynamical breaking of fermionic chiml symmetries. In the limit of 

vanishing up and down quark masses, mu,* -t 0, the pion masses go to zero, rn: --+ 0, 

and the pions become exact Nambu-Goldstone bosons (NGB’s). Most of our intuition 

about pNGB’s derives from this established system, which is one of the most profound in 

elementary particle physics. We will exploit and develop the analogy with this system in 

greater detail in Section IV. The basic lesson is: Many continuous (perhaps approzimate) 

global symmetn’es may etist in natwe that are spontaneously broken, and have associated 

NGB’s (or pNGB’s) with phenomenological implications. 

One such example is the familiar axion,14 a hypothetical pNGB associated with the 

Peccei-Quinn (PQ) U(1) symmetry. The PQ-symmetry is broken by QCD instanton 

effects and the axion thus develops a small mass, mdoa - U(mrfr/f~,,,,), where one 

conventionally assumes fd,, - 10” GeV. Thus, the Compton wavelength of the axion 

is measured in centimeters, requiring the construction of macroscopic microwave cavities 

as detectors. Of course, since very low mass particles such as the axion are very difficult 

to detect, few theorists spend their time trying to invent new ones. However, the axion, 

which is a respectable, if not desirable, theoretical entity portends an important lesson: 

the physical world may contain many new phenomena in the far infrared which are not 

directly accessible, but nevertheless may play an important role in nature. 

A generalization of axions to a class of pNGB’s with masses of order m;c6,,/f has 
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been analyzed in some detaiL7 Remarkably, if one associates mrchon - mncutsno - 0.01 

eV and f - MGIJT N 1Ol5 GeV, one arrives at a cosmologically interesting scale A - 

fM - Megaparsecs. This can lead naturally to a late-time phase transition. 

Embedded into theories that contain NGB’s or pNGB’s is our only rational guide- 

line in thinking about ultra-low mass particles: the principle of L‘naturalness.” In this 

regard, the mass scales of such particles must not be fine tuned, and must appear as 

a consequence of some plausible mechanism. ‘t Hooft first gave a concrete definition of 

the principle of naturalness: a parameter is “‘naturally” small if when it is set to zero, 

the symmetry of the Lagrangian is increased. I5 In this case, the parameter will be multi- 

plicatively renormalized and will remain small to all orders of perturbation theory. While 

the cosmological applications are insensitive to whether or not a given model Lagrangian 

has been fine tuned, the form of any given low-energy effective Lagrangian, or its finite- 

temperature corrections, will be strongly influenced by the symmetries of the interactions 

of the full theory, and therefore we focus on natural models. 

More generally, there are two versions of the naturalness principle: (1) “Strong Nat- 

uralness,” in which the very low mass scales must emerge on the grounds of symmetry 

and dynamics without the input of any large hierarchy (for example, technicolor theo- 

ries respect this principle as a means of generating the hierarchy involving the W mass 

and the Planck mass, Mw/mpl - 10-l’, although they have difficulty accomodating the 

observed large quark and lepton masses) (2) “Weak Naturalness,” in which one inputs 

a large hierarchy ab in&o, which is then protected by a symmetry in the theory from 

being overturned by radiative corrections (for example, supersymmetry operates in this 

mode of protecting the hierarchy Mw/mpr, and “chiral” symmetries protect small ratios 

like mneUttiol mclcctron 5 1OP 1. 

The axion falls into the category of strong naturalness, since it would be an identi- 

cally massless particle by virtue of a symmetry principle if it were not for QCD effects 
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(instantons) which spoil the symmetry and are operant at energy scales of about 1 GeV 

(the QCD scale arises naturally from, e.g., any Grand Unified Theory upon specifying 

aqcD at the GUT scale). Other kinds of pNGB’s, having masses given by approximate 

expressions such as m+ - m~~,,,/f, where th e eta constant f can be viewed as large, d y 

say 1O”GeV to lO”GeV, are technically naturally low mass partic1es.r Here, the boson 

mass is protected by fermionic c&al symmetries such that if rnnh.,, = 0, then m.+ 

vanishes to all orders of perturbation theory. 

Theories with naturally low-mass particles should be contrasted with theories where 

a small mass is unnatural. From a particle theorist’s point of view, the model of Press, 

et al.,‘l suffers from being unnatural. The Lagrangian they considered assumes a mass 

term for a scalar field multiplet that is fine tuned to be of order (30 kpc)-‘, yet the 

field is assumed to have normal interactions with other particles. In any quantum field 

theoretic version of the model this would lead to an additive quadratic divergence in the 

mass term. Thus, to maintain the small mass term one must fine tune the theory in each 

order of perturbation theory. 

As a general laboratory for the statistical mechanical phenomenology of pNGB’s, we 

will focus on the models developed by Hill and Ross. ’ These models have a light pNGB 

4 which couples to fermions. The effect of these fermions is to induce a potential for 4, 

which can lead to a phase transition. These models are very simple, but we believe that 

they are sufficiently general to imitate any kind of pNGB dynamics. For example, the 

ZN models for N > 2 lead to a phase transition analogous to the axion case. We remark 

that in this analysis we will not include the potential effects of anomalies, aside from 

briefly indicating in Section IV how they arise in pNGB physics. 

The interesting setting for these theories in a cosmological context is one in which 

the fermions are the light neutrinos and 4 is a NGB associated with symmetries of the 

neutrino masses. We will discuss this below in the context of pNGB’s associated purely 
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with hypothetical Dirac mass terms, as well as those associated with Majorana mass 

terms.‘3JB The critical temperature of the transition in some cases is either naturally of 

the order of, or determined by, the small masses of the neutrinos, and as such would 

be rather small compared to the usual scale of critical temperatures in particle physics 

models. 

The purpose of this paper is to understand the statistical mechanics of pNGB phase 

transitions. As a “straw man” the first and simplest case we present in Sec. II is an 

unrealistic one. The model presented in Sec. III is more realistic but technically unnatu- 

ral; it does however illustrate several features that will be present in more sophisticated 

models. It is analogous to a Coleman-Weinberg r’ effective potential with thermal or 

finite density corrections coming from relic neutrinos, and it has some striking features 

in common with slow-roll inflationary schemes. Sec. IV contains a discussion of the mo- 

tivation for neutrino pNGB models. In Sec. V, we review the 2a models where we give a 

standard computation of the effective potential in the tadpole formalism (which we use 

throughtout).” We then study the finite temperature effects for this model. The usual 

trick of using the high temperature expansion in order to determine 2’~ is unreliable and 

more delicate methods must be used. We then generalize the Za model to 2N models, 

which softens the fermion loop effects in the UV. We find that these models do not un- 

dergo a conventional phase transition. The potential “turns on” at low temperatures in 

analogy to the axion case. We summarize our results in the final section. 

II. SELF-INTERACTING SCALAR MODEL 

Let us review a phase transition associated with a simple model consisting of a single 

real scalar field 4 with a classical potential of the form 
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I$(+) = -~m$$’ + aAo~#~, 

The classical potential Eq. (2.1) has minima at 4 = +u, where o = dmi/Xo. The mass 

of the scalar field is related to the curvature of the potential at the minimum: 

d%(d) 
-; = d@ = 2mi = 2X02 

o=o 
(2.2) 

This is a very simple model that illustrates the phenomena of phase transitions and do- 

main wall production. The calculation of the critical temperature of the phase transition 

in this model is well known and completely straightforward. We review it here to estab- 

lish some notation and definitions that will be of use in the more complicated models 

discussed below. 

Questions of symmetry breaking, symmetry restoration, finite-temperature effects, 

etc., are best studied by considering the “effective potential.” This will account for the 

quantum effects of virtual particle emission and absorption, as well as the effect of emis- 

sion and absorption of particles from the thermal background. Methods of calculating 

the effective potential are well developed. In one prescription the evaluation of the po- 

tential involves shifting the field by an arbitrary amount (say 4 + 4 +$), and evaluating 

the “tadpole” diagram of Fig. la in the shifted theory. In this formalism the effective 

potential to one loop is 

V(4) = vO(d) - / d&r(‘)~;m6, (2.3) 

where l?(r) is simply a factor of i times the tadpole diagram of Fig. la in the shifted 

theory. In the shifted theory the potential is 

h(d) = -irni(d - 4)” + :A(4 - I$)“, 

which results in a coupling constant for the cubic term of A$ and a mass-squared of 

-mg + 3Xp. Evaluating the tadpole of Fig. la, Iti) is simply 
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Integrating with respect to 3 and rotating to Euclidean momentum k, the one-loop 

correction to the potential is 

K(d) = ; / & ln(ka - rni + 3X4’). 

This expression of course is divergent and it is necessary to cut off the integral at k’ = AZ, 

with result 

V(4) = v,(4)+K(+) 

= d2.7) 

where a and b include terms proportional to A. These constants will be determined 

by renormalization conditions, e.g., by the definition of a renormalized mass m and a 

renormalised coupling constant X. After renormalization, the zero-temperature, one-loop 

potential may be expressed as 

VI(~) = &M4(d)ln y , ( 1 
where p is an arbitrary mass scale which can be related to the renormalized coupling 

constants, and M’(d) = -mi + 3X4* is the mass as a function of 4. 

The finite-temperature’9 corrections to the potential arise from the interaction of the 

4 field with the ambient background. To calculate the effect of the background, one 

computes the quantum corrections to the tree-level potential of Eq. (2.1), taking into 

account the fact that the background influences the C$ propagator. That the background 

should have an effect at the one-loop level is easy to see, since evaluation of the effective 

potential in the one-loop approximation involves evaluation of the tadpole diagram of 

Fig. la, which in turn involves the 4 propagator. The 4 propagator is influenced by the 

distribution of real particles in the background. 
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If the phase space density of the 4 ‘s is denoted by f+(k), the 4 propagator (in the 

real-time formalism) becomes 

DT(k) = i(k’ - M2)-’ + zlrfm(k)S(k2 - M’). P-9) 

Consider the part of the momentum integration of the tadpole diagram for emission and 

absorption of a particle on shell (k’ = M2). Th ere is no way to differentiate between 

the possibility that the absorbed particle is the virtual particle emitted, or the absorbed 

particle comes from the background. The second term in Eq. (2.9) accounts for the latter 

possibility. 

Clearly the effect of the background particles depends upon their phase-space density. 

If the 4’s are in thermal equilibrium, they will be distributed in phase space according 

to the Bose--Einstein distribution: f4(k) = [exp(E/T) - l]-*, where E = d-. 

For the moment, we will make the assumption that the phase-space distribution of the 

4’s are described by the equilibrium expression. 

In the one-loop approximation, the potential is a sum of the tree-level potential, V,(4) 

given by given by Eq. (2.1), a zero-temperature one-loop correction, VI(d) of Eq. (2.8), 

and the temperature-dependent one-loop potential, AVT(~):” 

v(d) = Vi(d) + K(d) + A%-(4). 

The temperature-dependent part of the propagator adds to r(r) a term 

r$) = -1 
I 

*6X$ 2rf+(k)6[k2 - (-n$ t 3x@)]. 
2 (2x)4 

(2.10) 

(2.11) 

Following through the integration with respect to 4, rotation to Euclidean momentum 

k, and integration over d4k, one obtains the (finite) result 

(2.12) 
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where again, M’(d) = -mg + 3X4*. 

To demonstrate that there is a phase transition and to calculate the critical tempera- 

ture is straightforward. At zero-temperature the minima of the potential are 4 = k, and 

the curvature at 4 = 0 is negative (i.e., 4 = 0 is a local maximum). At high temperature 

AVr(d) can be expanded in 4, with the leading-order &dependent term proportional to 

+P@. Clearly at high temperature the curvature of the potential at 4 = 0 is positive, 

and indeed q4 = 0 is the true minimum of the theory at high temperature. We will denote 

the temperature at which the curvature of the high-temperature minimum vanishes as 

the critical temperature, Tc. In the above theory, b”V/&#? evaluated at 4 = 0 changes 

sign at a temperature TC = 2~. 

This model illustrates the standard scenario for making walls. At temperatures above 

the critial temperature, the value of the field is pinned at the high-temperature minimum, 

4 = 0. This is because at high temperatures 4 = 0 is the global minimum of the potential, 

and furthermore, the mass of the field at high temperature is large (of order XT). It is 

the large mass that pins 4 to the high-temperature minimum. Now once the temperature 

drops below the critical temparature, the I$ field will evolve classically to either of two 

possible minima. Regions of the Universe in different minima will be separated by a 

domain wall. This scenario depends upon the fact that as the phase transition starts, q5 

is localized at a low-temperature maximum, which is also a high-temperature minimum. 

Note that To/m+ = sr 2 X. Thus, it appears that by making X sufficiently small, one 

might have a late-time transition generating soft-walls. Let us explore this scenario. 

Let us assume a generous range for Tc, say To 5 Tc 5 T,.,, where To is the present 

temperature, To = 2.7 K - 2.4 x 10e4eV, and T,.. is the temperature at recombination, 

T,., N 0.3 eV. Let us also assume that the boson has an ultra-low mass, m+ 5 lo-s4eV. 

The combination Tc 2 To and m+ 5 lo-r’eV leads to the constraint X 5 lo-“. If this 

constraint is satisfied, the model as presented will lead to a late-time phase transition, 
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and contains soft domain walls with thicknesses of order mm’ - parsecs. 

However, there are two serious problems with the model. The first problem is that 

it is unreasonable to assume that a fundamental constant, such as X, has a value of 

lo-" without some deeper underlying motivation. Such a value is unnatural in the 

technical senseI and is arbitrary. A second difficulty is that with such a small value 

of X it is unlikely that the 4’s were ever in equilibrium and the assumption that they 

are present in a thermal phase-space density cannot be justified. Unless the potential of 

Eq. (2.1) is augmented by some additional interaction terms, the only processes leading 

to thermalization of the 4’s are 4 self-interactions. The cross section for this processes in 

the relativistic limit is cbint = X2/a N X2/T’, where the last approximation assumed that 

the average energy of the 4 is characterized by a temperature 2’. Zf 4 is in equilibrium 

and relativistic, n+ - Ts, so the interaction rate of the +‘s is rint - n~~ii,t - XV. In 

the radiation-dominated era, the expansion rate is H - T’/mpl, so rint/H - X’mpl/T. 

If X = lo-“, then Pint/H < 1 for T 2 10-s”mpl << To. A similar conclusion follows for 

the expansion rate appropriate to a matter-dominated era. 

Clearly the assumption that q5’s exist as a thermal background cannot be justi- 

fied. Of course, one might imagine that the background is not established through 

self-interactions, but rather is the result of some non-standard (but reasonable) process 

such as primordial black-hole evaporation, quantum effects during inflation, or other such 

processes. 

We will now turn to our attention to developing models where the phase transition 

is driven not through 4 self interactions with a background, but rather by 4 interactions 

with a background of some other field 4, typically a fermion. The virtue of this compli- 

cation is that it is possible to have +-li, interactions weak enough to provide a late-time, 

soft-wall transition, but the 1c, can have additional interactions that can establish the 

background by thermal interactions. 

10 



III. SCALAR FIELDS WITH YUKAWA INTERACTIONS 

To the classical potential of Eq. (2.1) we add a Yukawa coupling of 4 to a fermion 

field $:‘l 

vo(#$$) = +~rna t $fJ4 - h&A (3.1) 

where the parameters mo, X0, and h are the unrenormalized mass and coupling constants.” 

Before turning to the temperature-dependent effects, consider the zero-temperature 

radiative corrections. The one-loop corrections involves calculation of the tadpole dia- 

gram of Fig. lb in addition to the scalar tadpole of Fig. la. In the following we will 

assume that the fermion loops dominate, which will be true if if ha >> Xe, and ignore the 

boson tadpole. The effect of the +,6 interaction on the effective potential is evaluated 

by calculating the tadpole as discussed in the previous section. Upon shifting the field 

4 -t 4 + 4, the mass of the II, is M$ = h& and the +++J vertex that appears in the 

tadpole is proportional to h. Thus r(l) is obtained from computing the one-loop tadpole 

diagram of Fig. lb: 

J 

4 
r(l) = a - 

(iii;4Trg ‘“ha’ (3.2) 

Following a procedure similar to the one outlined in the previous section, one obtains 

terms in the one-loop effective potential that are infinite (proportional to a cut off A) 

and terms that are finite. The infinite terms are dealt with by some renormalization 

prescription, and the renormalized, one-loop effective potential is simply 

K(4) = -&(hdYln $, (3.3) 

where /J again is an arbitrary mass scale related to the values of the coupling constants. 

Now the effect of a background of real 4’s on the effective potential is calculated along 

the line as the previous section. Again the tadpole of Fig. lb is calculated replacing the 

fermion propagator by its finite-temperature expression: 
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ST(k) = i($ - A$-’ - Zxf+(k)($ + M+)S(ka - LW;), (3.4) 

where here f+ is the phase space density for 4. Again let us assume the phase space 

density for $J is that of a thermal distribution (i.e., a Fermi-Dirac distribution with 

temperature T). This adds to the one-loop effective potentid a temperature-dependent 

term 

Ah(d) = -4s J,- dz r*ln [l t exp (-&XLG$F)] 

In comparison to Eq. (2.12) several differences are obvious. The overall sign is opposite 

because there is an overall sign difference between fermion and boson loops. The sign 

difference in the argument of the logarithm arises from the sign difference in the Fermi- 

Dirac verses Bose-Einstein distribution functions. Finally the overall factor of 4 owes to 

the trace over r-matrices involved in the fermion loop. 

Now let’s consider the phase transition. Let us assume that the zero-temperature 

one-loop potential has negligible effect and the curvature at 4 = 0 remains negative. 

Expanding Eq. (3.5) for large T, AVT(+) 1: +ha@Ta/3. Clearly at high temperature 

the curvature of the potential at 4 = 0 will be positive, and again it will be the global 

minimum of the potential. We again define the critical temperature for the phase tran- 

sition to be the temperature where ~“V/~qP evaluated at 4 = 0 vanishes. This results in 

a critical temperature of Tc/m+ = h-l&. This expression is very similar to the critial 

temperature in the model of the previous section with the replacement h tt v% 

Clearly by making h sufficiently small it is possible to have Tc > m+ for a late- 

time, soft-wall phase transition. However the present model is superior to the previous 

model in one important regard: Although the + field d riving the transition must be very 

weakly coupled to 4, it may have stronger couplings to other fields. These other (yet 

unspecified) couplings can be sufficiently strong ~to establish ?I, in thermal equilibrium. 

Therefore, although 4 may be completly decoupled from the thermal bath, its interactions 
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with the thermal background of $‘s can restore the symmetry at high temperature and 

lead to a phase transition. 

The model still suffers from the ugly feature of very small, unnatural dimensionless 

coupling constants. In the next section we will describe the physical motivation for the 

origin of such small dimensionless coupling constants. The model will have some of the 

features of the model of this section. Before proceeding, let us restate the parameters of 

the present model. The model has a scalar field 4 with mass m+ 5 10-14eV. The vacuum 

expectation value of the scalar field is Q. The Yukawa coupling of 4 to a fermion field 

$ results in a mass M+ = hu. If h is much larger than the scalar quartic self coupling, 

the phase transition temperature will be Tc N mb/h. If we want Tc to be larger than 

To, then h s 10ezo. However we are free to choose cr to be as large as desirable, and 

to have the 4 field coupled to other particles with sufficient strength to establish it in 

equilibrium. 

IV. PSEUDO-NAMBU-GOLDSTONE BOSONS 

A. Chiral Lagrangians 

The model discussed in Sec. III most simply demonstrates the basic idea of a late-time 

phase transition, but it suffers from the lack of symmetries that can naturally give a soft 

boson mass scale for 4 without fine tuning. Let us now consider models in which these 

constraints are implemented.z3 

Consider first the low-energy effective Lagrangian which contains a neutrino field v: 

L = ~W&Qb t C&?VL + v&3vR $ (miipRei6ff + h.c.) (4.1) 

where v~ (YR) is the left-handed (right-handed) projection: vr, = (1 - 7s)v/2 (VR = 
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(1 + 7s)v/2). The factor of rnei+/j can be viewed as arising from the vacuum expectation 

value (VEV) of some U(1) complex scalar field @ that is coupled as gVLv&’ t h.c. In a 

V(1) invariant potential V(@) we assume that @ develops a VEV of (a) = fe’“/f/& 
and m = gf/fi (the factor fi assures that 4 has a properly normalized kinetic term of 

(ad)‘/2 coming from the kinetic term of @, 1X1’). 

Eq. (4.1) is a “chiral Lagrangian,” possessing the continuous chiral U( 1) symmetry: 

vr, -+ e’=vL; “R + e-‘QvR; dJ-d+zaf. (4.2) 

We emphasize that the symmetry is not broken, and is properly said to be “nonlinearly 

realized” (this is often a confusing point: spontaneously broken symmetries are in fact 

equivalent to nonlinearly realized symmetries and are not really broken symmetries). We 

remark that chiral Lagrangians have several important and well-known properties: (1) 

as stated above, they can be embedded into a fully renormalizeable theory in which, e.g., 

a U(1) complex field develops a vacuum expectation value, (a) = f/d, and 4 is then 

the residual Nambu-Goldstone boson; (2) fZ can itself be viewed as renormalieeable for a 

small cut off A << f up to suppressed counterterms of order A/f; (3) 4 will be identically 

massless unless terms are introduced which explicitly break the chiral symmetry; (4) 4 

satisfies “Adler decoupling,” i.e., we may replace v everywhere by Y’: 

“;. = vLei41afi “;1 = “Re-i4/af; (4.3) 

and our Lagrangian becomes: 

15 = ~avap~+d,ydL +tiRigdR + m(ij,&R + h.c.) + ~a~~&~~d 
2f (4.4) 

and we thus see that 4 disappears in the mass term but couples derivatively to the 

neutrino as apd ii7.5~~~. Therefore, for small 4 momentum qF, C$ emission or absorbtion 

amplitudes will tend to zero as q,, + 0 (“Adler zero”). An implication of this is that 

4 will not mediate a long-range l/r’ force as a consequence of this decoupling theorem 
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(when the symmetry is broken by a non&rally invariant mass term as discussed below, 

then the Adler decoupling can be violated and I$ can mediate a long range force, though 

this requires CP-violation7). 

We remark that at this stage on yet another branch of NGB or pNGB physics. If 

we integrate the last term of Eq. (4.4) by parts we obtain -(2f)-‘4 Pi+y,,v. Now if 

we include the effects of generic gauge fields that may be coupled to Y (for example, the 

VL couples to the electroweak gauge fields) then the divergence of the axial current will 

contain an axial anomaly 6’%7s7,,v = cF3 + . . . . and therefore we find that 4 couples 

to the gauge fields through this anomalous term: -(2f)-‘4 cFp’. This is an ezplicit 

symmetry breaking eflect coming from quantum loops and it generally leads to important 

consequences. For example, the decay &’ -+ 27 involves this term; the gluon field enters 

the divergence of the PQ current ultimately giving a mixing of the axion to the ?r’, 17 and 

q’ from which the axion mass derives. In principle we should include potential anomaly 

effects in our effective potential analysis, however we will not do so for a reason: the phase 

transitions we consider here occur at very low temperature (or finite density) and arise 

from other explicit symmetry breaking effects. It is hard to see how anything but the 

electromagnetic anomaly could play a role at these low energy scales. It is conceiveable 

that an electromagnetic effect, e.g., in a plasma, might trigger a late-time transition 

through the anomaly, but we will not consider this possibility in the present paper. 

Let us now consider the explicit breaking of the symmetry by effects other than 

anomalies. By this we mean the addition of new terms to Eq. (4.1) which explicitly 

violate the nonlinearly realized symmetry of Eq. (4.2). For example, to the Lagrangian 

we may add a small mass term for 4 of unspecified origin. Usually this comes from some 

deeper symmetry breaking in the theory which breaks the continuous U(1) down to a 

discrete subgroup Z,. For example, let us break U(1) to its trivial center by adding a 

“soft-breaking” term, which is a cosine potential for 4. This implies that 4 -+ 4 + 2n7rf 
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remains an invariance. So we now have: 

/I?= L+iii4cos(~/f +q. (4.5) 

By expanding the cos +4/f term about a local minimum we infer the mass of the 4 boson: 

rni = iE4/fZ (4.6) 

and there are also further interaction terms such as a Xd4 term where 

x = iiPj12f4. (4.7) 

The physical values of X and m+ are proportional to the ratio E/f, and can be almost 

arbitrarily small, while remaining stable under quantum radiative or thermal corrections. 

This is “natural” in the sense of ‘t Hooft,‘s and is due to the fact that +Z = 0 is a symmetry 

limit of the full theory [in which we recover Eq. (4.2)]. 

For example, with f - 10’s GeV and 5ii - lOma eV we have rn4 - lo-sOeV, or 

a Compton wavelength, ti/mbc - 10 Mpc. The incoherent particle interaction rates 

will be negligible since X - 10-109! The Adler decoupling theorem still holds with soft 

breaking since it follows from redefinition of fermion fields. In general, reaction rates 

involving 4 coupled incoherently to matter will be suppressed, since the cross sections 

are necessarily proportional to a power of l/f’. Thus it is difficult, if not impossible, 

to excite 4 in the laboratory, just as the detection of invisible axions is difficult. Since 

reaction rates that maintain thermal equilibrium of 4 are of order T3/fz, in a radiation 

dominated Robertson-Walker phase we see that the condition that 4 be in equilibrium 

is T3/fa 2 Tz/mpl or T 2 f’J mpl. Hence, a pure pNGB like 4 decouples very early in 

the evolution of the Universe. 

What kind of deeper structure can give rise to a mass term for 4? In the case of QCD 

the proton and neutron are analogues of the Y field, and the pion is the analogue of 4. The 

deeper structure that breaks the chiral symmetry is the presence of light quark masses, 
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which are not chirally invariant. This leads to the non-zero pion mass term. However, it 

is unlikely that the only manifestation of a deeper symmetry breaking term is merely a 

mass term for 4. Indeed, in the case of the nucleon-pion system, the finite quark masses 

also lead to a small chiral symmetry breaking term in the proton and neutron masses 

(known as the r-term). We can make a strict analogy to this situation in the present case 

by adding an additional neutrino mass term to the Lagmngian, which explicitly breaks 

the chiml symmetry, in analogy to the QCD u-term. The low-energy Lagrangian then 

becomes: 

.c = ~aqbag++iiLqvL +i7ni~uR 

+(mw#” + EFLVR + h.c.) + +X4 +4/f + e), (4.8) 

where the term involving E explicitly breaks the symmetry of Eq. (4.2). Now, if 5ii + 0 

we must also set E + 0 to recover the symmetry limit of Eq. (4.2). However, a nonzero 55 

will always be induced by the presence of a nonzero E and m. For instance, the diagram 

of Fig. 2a with a cutoff A < f gives an induced term in the Lagrangian 

L. mdllced - g COS(dIf). (4.9) 

In the present case we see that the induced scalar mass will be of order: 

m; - mc(A’/f2) - me. (4.10) 

We can view this as the origin of the scale of 5ii2 - ,/GA. The mass can be naturally 

small in the technical sense since we can tune the symmetry breaking parameter E to be 

arbitrarily tiny for large m so that the observed neutrino mass is, e.g., m, - mo - 1 eV, 

while m+ - (100 Mpc)-’ with E - 1O-s0 eV, and the symmetry will guarantee that we 

don’t have to worry about radiative corrections changing this result. This is arbitrary, 

however, and this is not the ultra-low mass case we seek for application to a late-time 

phase transition. 
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In the Lagrangian of Eq. (4.9) we observed the appearance of a (“large”) quadratically 

divergent contribution to the induced mass of 4. Can we somehow reduce the degree of 

divergence of this induced term ? The answer is yes: residual symmetries can readily 

control this. 

Consider the following Lagrangian containing N Dirac neutrino species and invariant 

under a 2~ discrete symmetry: 

’ = +&?d + Nc*Yjigvj + Ngl (m + ,,;d/f+aiix/N) ujLvjR + h.c. (4.11) 
j=O j=O 

The continuous V( 1) chiral symmetry is broken down to a residual 2, discrete symmetry: 

"j + vj+l; VN-1 + VO; 4+4+2xf/N. (4.12) 

If one now computes the induced 4 mass term, one obtains the d-dependent term 

Ny Mj’log (AZ/M;) , 
jzo 1f.+ 

(4.13) 

where Mj’ = ma + c2 + 2mecos(qS/f + 2j7r/N). N o ice that the potential retains the t 

discrete symmetry I$ -+ 4 + 2jrf /N. N ow, it is readily seen that Cj Mj’ is a constant 

independent of 4 for N > 2. Th ere ore f the A dependence in Eq. (4.13) is illusory; the 

&dependent part is A independent, and for N > 2 we may write 

V(4) = - Tg 2 log (Mj) + const. (4.14) 

Hence, in 2~ models we can view the symmetry breaking as soft and the potential of 4 

is calculable. 

These models can be further generalized. In Ref. 7 the effects of CP violation are 

also included to contruct models in which the Adler decoupling theorem is violated and 

the pseudo-Nambu-Goldstone bosons develop CP-violating Yukawa couplings. This is 

analogous to including a B-term into QCD (without an axion to kill it!). The net effect is 
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the possibility of weak, sub-gravitational strength long-range forces in a natural model. 

This is a further complication of the model which we will not include at present. 

B. Majoron Models 

In discussing neutrino masses the most sensible framework is that of the “seesaw” 

mechanism.is Here one attempts to explain the comparatively tiny values of neutrino 

masses relative to their charged lepton counterparts by invoking ultra-large Majorana 

masses for the right-handed neutrinos. In short, one needs only to assume that (i) all 

neutrinos have Dime mass terms (perhaps of the same order as their charged lepton 

partners within a given generation), and (ii) all right-handed neutrinos have a Majo- 

rona mass lenn. With both terms present we have a conventional Gell-Mann-Ramond- 

Slansky-Yanagida’s see-saw mechanism. The predicted light mass scale of neutrinos will 

be acceptably small, of order m&,/M. The right-handed neutrinos are favored for a 

large Majorana mass term because they carry no known gauge symmetries. Nonetheless, 

one can also invoke small left-handed Majorana masses, as in the Gelmini-Roncadelli 

models’ These carry electroweak isospin of Z = 1 and must be very small, since Z = 1 

effects are suppressed in the Standard Model. 

Here we will give only a brief toy model discussion, leaving a more detailed catalogue 

of schemes to another place.‘s We consider a single Dirac neutrino field, with left- and 

right-handed components VL, vn. We now assume the existence of Dirac and both left- 

and right-handed Majorana mass terms: 

;( 2) (2 ,;,f ) (2) +h.c- (4.15) 

Here superscript-C denotes charge conjugation. We assume E < m < M. The phase 

exp(+/f) is the CMP Majoron, is the NGB associated with spontaneous breaking of the 
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U(l)n rh-neutrino number symmetry. We take t to be an explicit U(l)& lh-neutrino 

number breaking effect. The Dirac masses communicate the explicit breaking in the rh 

sector into the lh sector, and thus the majoron becomes a pNGB. 

If we set either m = 0 or E = 0 then the phase exp(id/f) can be eliminated from 

the mass matrix by a redefinition of the neutrino fields, and we are left only with the 

derivative coupling and 4 remains massless. This is the usual assumption for the majoron. 

However, we see that the diagram of Fig. 2b implies an induced mass term for 4 given 

&docedN EmZM ;ym') cos( 4/f), 

which is highly suppressed owing to the combination of small c and the chiral suppres- 

sion involving m2. Thus, we expect that majorons will behave in a mode which is no 

more divergent than the 21 case described above, and in more general schemes will be 

suppressed as in the 27~~ case. 

In fact, the full behavior of broken majoron models may be very rich. Bjorken (pri- 

vate communication) has suggested considering the full 3-generation standard model to 

contain a spontaneously broken .5U(3)~ (which will b e in a sextet mode, corresponding 

to &‘) which will produce NGB’s. The SU(3) R is then explicitly broken by the Dirac 

mass terms, and no lh majorana masses are included. The result is a hierarchy of NGB’s, 

some remaining massless while others acquire a spectrum of induced mass terms. More 

general schemes such as this will be considered elsewhere.2s 

We turn now to the thermal corrections to the chiral Lagrangians. 
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V. THERMAL PROPERTIES OF 2N MODELS 

In this section we will analyze the thermal properties of the 2N-symmetric chiral 

Lagrangian models discussed in the previous section. For simplicity we will first consider 

the 22 model, and then generalize our results to the 2, case. 

A. Zz-symmetric models 

The effective low-energy theory (here, low-energy refers to scales much smaller than 

f) consists of two fermions (presumably neutrinos) $j, j = 0, 1, coupled to the scalar 

field 4 by Yukawa couplings of the form: 

- LYuK = &$j {m + E [COS(4/f + jr) + i76 si*(d/f + jr)]} +j. (5.1) 
j=O 

where we have used ~L$&O’ $ h.c. = &J cos(a) +i@ys+ sin(a). Here, f can be thought of 

as the scale at which the continous symmetry, of which 4 is the Nambu-Goldstone boson, 

is spontaneously broken. The origin of and motivation for considering such theories was 

discussed in Sec. IV. 

We can rewrite Eq. (5.1) by performing a chiral rotation to eliminate the 7s term, 

with result 

-LYUK = -M+(d)&do - M-(+)&h 

M:(d) = ma $ E’ f 2mccos(q+/f). (5.2) 

Note that at this point there is no potential for 4. However the effect of the +-# coupling 

will generate a non-trivial potential for 4 through radiative corrections, rendering it a 

pseudo-Nambu-Goldstone boson. We first calculate the zero-temperature potential, then 

consider the finite-temperature potential. We will employ the same methods developed 

in Sec. III. 
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We will only consider the fermion contributions. x The tadpole method described in 

Sec. II can be adapted to the present case. Rather than defining tadpoles in 4, i.e., (d), 

as in the self-interacting scalar model, here we must preserve the full symmetry of the 

theory and define the tadpole to be expectation value of the mass terms. The one-loop 

potential now receives contribution from two tadpoles with fermions as in Fig. lb, from 

the mass terms (M+(qS)$o~o) and (M-(4)&yL). Th ese contribute to the unrenormalized 

one-loop potential a result given by 

~(4) = j=E- [& - $Mj(d) - &-~;(d) (le y - i)] . (5.3) 

Here A is an ultraviolet cutoff for the theory; presumably it cannot be larger than f, since 

at this scale the effective theory with the Nambu-Goldstone boson 4 must be supplanted 

by the full theory. 

We must now renormalize the potential. In so doing we will introduce an arbitrary 

energy scale p; of course no physical effects will depend on p. To proceed, first introduce 

the scale ,u into the potential: 

--&M;(d) 
2 

+ 1~T2M.3d)l*$ - 1 (5.4) 

Before proceeding we make note of the following identities: 

c M!(d) = 2[(mZ + c’)* f (2me)‘cos*(~/f)]. (5.5) 
j=+,- 

Because of the residual 22 symmetry M:(d)+ Mf(qS) is independent of 4. From Eq. (5.4) 

we see that we must add counterterms Vc~(q5) = Y, + V1 cos”(d/f), where V. and VI are 

C$ and p independent, to the original Lagrangian to cancel the cutoff-dependent terms. 
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Here V. and V, are given by 

Yo = R(p) -2 + $ ,-x M:(g)) t &2(m2 + 2)‘ln $; 
I-+,- 

VI = MI’(p) + &2(2mr)‘ln$, (54 

with V&L), and @(p) finite. The final potential is then given by 

v(4) = &T(d)+&(d) 

= RJ(PL) f @(PI c44vf) 

1ny -~)+M!(d)(ln~-k)]. (5.7) 

Now the p-independent parts of &(/A) and g4(p) can be fixed by renormalization 

conditions. In particular, let us choose the, renormalization conditions 

V”(d~)l+=~ = -2 V(?r/2) = 0. (54 

At this stage the sign of rni is not fixed. The final potential becomes 

V(d) = & (m: + mZ_)’ (In m’z,“’ - i) 

where we have made yet another definition, m+ = (m f E). Althought it is not apparent, 

Eq. (5.9) is p-independent, as can be seen by showing V(c$; cl) - V(c$; p’) = 0. We leave 

the exercise in algebra to the reader. 

Obviously V(d) is periodic with period * and that its extrema are at 4 = 0, 7r/2 

(mod r). The location of the minima depend on the sign of mi. We show the potential 

in Fig. 3 for negative m$ 

Let us now turn to the finite temperature corrections to the effective potential for 4. 

Given the d-dependent masses M+(d) and M-(d), we can then use the finite-temperature 

formalism discussed in Sec. III to compute the corrections [cf., Eq. (3.5)]: 
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Ah(d) = -45 j=F- l-da +‘ln [l t =xp (--d-)1 (5.10) 

The signal of a second order phase transition is the flattening of the potential at the 

high-temperature minima, i.e., V"(c$ = O)ITzTo = 0. Here, V(d) = Vl(qS) + AVT(~). The 

temperature-dependent mass squared at 4 = 0, m’(T), is given by: 

m’(T) = rni + $g j=x-(-v lrn d+ xzl ;;;p;x?$~;g)l,, . (5.11) 

Since 4mE = rn: - mZ > 0, it is easy to show that the temperature-dependent term 

is always positive. Thus, if 4 = 0 is a minimum at zero temperature, it will remain so at 

any finite temperature. This implies that the T = 0 maximum at ?r/2 (when rni > 0) 

remains one at finite T. Thus we do not expect any phase transitions when rni > 0. On 

the other hand, if rni is negative, so that 4 = 0 is a maximum at zero temperature, we 

can balance the negative zero-temperature mass against the positive contribution from 

the finite temperature piece. Thus, we expect that there will be a phase transition at 

some critical temperature Tc in this case. 

Whether a phase transition occurs depends upon the sign of rni as can be seen by 

examining AI+(qS). An example of the temperature-dependent part of the potential is 

shown in Fig. 4. Clearly the curvature at 4 = 0 becomes more positive as the tem- 

perature increases. This does not depend upon the sign of the curvature of the zero- 

temperature potential as A&(+) is independent of mi. From Fig. 4 we also see that the 

finite-temperature corrections will always increase V(K/~) more than V(O), so if at zero 

temperature 7r/2 is a maximum of the potential, it will remain so at high temperature. 

Of course, the actual value of rni is arbitrary, since it contains a renormalization coun- 

terterm. The value of m$ is only technically naturally small, since it is protected by the 

chiral symmetry (and the residual discrete symmetries). 

There is no analytic expression for Tc; however, we can show that 7’~ must be of 

order m*. First we show that 2’~ cannot be much larger than the fermion masses mf 
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by means of the high temperature expansion. *7 For m/T < 1 we can expand the finite 

temperature potential as: 

A&(4) = c +(cj)hv +..., 
j=+,- 16+ 

(5.12) 

where we neglect terms such as (T-dependent) constants OI (T-independent) parts de- 

pending on cos* 4/f. These terms are unimportant as far as computing the effective 

mass. The critical temperature is obtained by setting the second derivative of the full 

potential at 4 = 0 to zero. Doing this within the high temperature approximation yields 

77x-m: * 
m = &lf2 : ( m?ln- -m”lnm- . 4 

T2 TL ) 
We can solve this for Tc: 

Tc = 

(5.13) 

(recall rni < 0). It is easily seen that this quantity is at most of order m+ so that the 

conditions for the validity of the high temperature expansion do not obtain, and the 

phase transition cannot occur at T >> m*. Now consider the possibility that Tc is much 

less than m*. In the limit m/T > 1, clearly AI+(d) 0: exp(-m+/T), so the phase 

transition cannot take place at T < m*. It follows that we should expect the phase 

transition to occur near the scale set by rn*. 

In Fig. 5 we show the total &dependent potential as a function of temperature. 

Clearly there is a phase transition somewhere in the range 3m- < Tc < 5m- when 

the high-temperature maxima become the low-temperature minima. Just as clearly, the 

phase transition will be second order. A unique feature of this model is that at the critical 

temperature the potential is absolutely flat-4 becomes a free field (not simply massless 

as in a typical second-order transition). This can be understood by observing that the 

only extrema of the potential are at 4 = 0, x/2, ?r ., and when the full potential 

evaluated at r/2 becomes equivalent to the potential evaluated at ?r, there can be no 
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intervening extrema so the potential must be flat. Thus at the critical temperature the 

Zz symmetry is promoted to a (non-linearly realized) Cr(1) symmetry. 

Above the critical temperature there is still a 22 symmetry-there is in no sense 

a larger symmetry at high temperature. Another interesting feature of this model is 

that at high temperature, the potential becomes T independent (except for an additive 

T-dependent, d-independent constant). This in in contrast to usual high-temperature 

scalar field theory where the mass of the scalar field at high temperature is proportional 

to T. 

Notice that the phase transition can lead to the formation of domain walls. For 

instance, if q5 is at the minimum C$ = IF for T > Tc, when the phase transition is complete 

regions of the Universe with 4 = 7r/2 will be separated from regions with r#~ = 3x/2 by 

a domain wall. However there is one concern with the above scenario: There may be 

no physical mechanism to set q5 to its high-temperature minimum. The value of r$ at 

high temperature may be free to roam and may not be pinned to any particular value. 

This is because the Zz symmetry of the model implies that the @T2 term will not be 

present, and at high temperatures the leading temperature-dependent, b-dependent term 

is @ln(T*), which grows slowly with T. One might well imagine a scenario where 4 has 

insufficient time to relax to its high-temperature minimum before the onset of the phase 

transition. If C$ has a value away from the low-temperature maximum at the onset of the 

phase transition, and it is constant throughout the Universe (say set during inflation), 

then the entire Universe may evolve to the same low-temperature value of q5 and domain 

walls would not appear. Therefore, if domain walls are produced, f must be considerably 

less than the scale of inflation. 

Finally, we digress for a moment to make sure we know just exactly whose temperature 

enters into the above expressions. Recall that the light neutrinos decouple from the 

ambient plasma at Tn - 1 MeV. Thus after this time the neutrinos are not in thermal 
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equilibrium. However, the neutrino distribution function is still that of a particle in 

thermal equilibrium (so long as T is not too much less than the mass) with an effective 

temperature given by a(tn)Tn/a(t) h w ere a(t) is the scale factor, and tD is the cosmic 

time at which decoupling occurs. Thus, it is this effective temperature that appears in 

the finite-temperature effective potential. 

B. 2N-symmetric models 

It is simple to generalize the models in the previous section, with its 2s symmetry 

amongst the fermions to one with N fermions and a corresponding 2, symmetry. The 

Yukawa couplings for such a model are: 

N-l 
--Cud = c ?j (m + f[COS(4/f + 2nj/N) + i75 sin(4/f + 2?rj/N)]}&. (5.15) 

j=O 

This theory has the 2~ symmetry given by 

tii + &+I; cblf + 4lf + 2rIN, (5.16) 

where now the index i is taken mod N. 

The same methods used in the 2s case can be used here to calculate the effective 4 

potential. We find [cf., Eq. 5.3)] 

K(d4 = Tg [ & - $Mi(dl - &M:(4) (i= q - i)] , (5.17) 

with A being the ultraviolet cutoff, as usual, and 

M,?(d) = m* -I- E’ + 2mecos(4/f + 2aj/N) (5.18) 

for j = O,... , N - 1. In parallel with the 2s case we introduce an arbitrary scale p, and 

rewrite the potential as [cf., Eq. (5.4)] 
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M?(d) 1 
-&M;(4) 1=*-j 

i 1 
+&M:(“)ln$ 1 (5.19) 

Our next task is to ascertain what types of counterterms must be included to absorb 

the divergences present in VI(qS). Before proceeding, we note the following: 

N-l 
c M;(d) = N(m2 + e”) 
j=O 
N-l 

(for N > 1) 

c M;(d) = N[(m’ + e’)’ + 2ma,‘] (for N > 2). (5.20) 
j=O 

Whereas in the 2, case Cj’=, M:(4) was 4 independent, if the discrete symmetry is 2N>2, 

then C&s M;(4) is also 4 independent. Thus, the only counterterm we need to add is 

the &independent term V,, given by 

NJ = RI(P) -z: (& - $iM:(d) + &$(+)l=$) . 
Forming the total potential and dropping irrelevant &independent terms, we find 

N-l 1 
V(4) = @IL) - go ~~jl(W y 

Again es can be found by some renormalization condition, and the p dependence in co(p) 

will cancel the p dependence in the log term rendering the entire potential finite and p 

independent. Since we did not need to add any &dependent counterterms, the 4 mass 

is calculable in terms of the parameters of the theory, i.e., m and E. 

The extrema of V(d) are somewhat trickier to find than in the 22 case. It can, 

however, be shown that these are located at d/f = 0, r/N mod 2r/N. Whether these 

are maxima or minima depends on N; for N even (odd) 4 = 0 is a max (min) while 

c,b/f = P/N is a min (max). The potential again has a simple periodic form. The form 

of the potential for N = 3 is shown in Fig. 6. 

Now the temperature corrections are easy to calculate-they are given by Eq. (5.10) 

where now the sum on j runs from 0 to N - 1. An example of the temperature-dependent 
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corrections to the potential is shown, in Fig. 7. It is clear that the sign of the temperature- 

dependent part of the potential is opposite to the sign of the zero-temperature potential. 

The total potential V(4) + AI+($) is s h own in Fig. 8 for several temperatures. The 

interesting result is that at high temperatures the 2N symmetry is promoted to an 

exact (non-linearly realized) U(1) y s mmetry. That this should occur is easy to see by 

examination of the high-temperature expansion of the finite-temperature potential [cf., 

Eq. (5.12)]: 

N-l 1 

A&(4) = 1 - 
M?(d) 

j=. 1679 
Mj4(4)ln-++..., 

which exactly cancels the entire $-dependent part of Eq. (5.22). Thus at high temperature 

the potential becomes exactly flat. 

What cosmology might one expect given the temperature behavior of the potential? 

Clearly between T - f (when the effective potential makes sense) and T N m, q+ is free 

to take on any value. Below some temperature of order m the potential minima will start 

to become important and different regions of the Universe will have different values of 4 

with domain walls between them. Thus, effectively there is a phase transition at T - m 

where the order parameter (in this case 4) evolves from whatever value it had at high 

temperatures to a zero-temperature minimum. In this case the transition is similar to 

the phase transition associated with axiom, although we emphasize that the underlying 

dynamics are quite different in the two cases. 

Also in analogy with the axion case, if inflation occurs at a scale less than f, then 

one might expect 4 to be set to a single value throughout the Universe. If this happens, 

when the transition occurs there will be a single initial value of 4 that will be random, 

there is nothing to perch the initial value of 4 on a low-temperature maximum, and the 

Universe will most likely end up in a single value of +-no domain walls. 
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VI. CONCLUSIONS 

In this paper we have given a general discussion of the thermal physics of pseudo- 

Nambu-Goldstone bosons. These afford a natural way of generating very soft scales of 

potential interest to astrophysics, typically of order rnb - m&,a/fiarge where we might 

choose qrnd - mnsvt,+no - 10-s eV, and fiargc - fGuT - 10’sGeV. These objects have 

a precedent in elementary particle physics in the familiar nucleon-meson system, as well 

as scores of theoretical generalizations, and the models considered here really involve 

no additional physical components. As in the case of the invisible axion, or familons,” 

arions, etc., we are simply abstracting the scales to those that are of potential interest 

to astrophysics or cosmology. We have discovered that the thermal behavior of these 

systems is very simple, controlled largely by the residual symmetries of the low energy 

potential. 

Though we have largely focused on the specific models of Ref. (7), these models 

capture most of the physics that can generally occur in the context of pNGB’s. For 

example, the 2, models for large N have very soft breaking of the continuous U(1) 

symmetry, due to the cancellation of the fermion loops at high momentum from the 

discrete symmetry. It is, therefore, not surprising that the thermal behavior of this 

system imitates that of the axion, since the PQ symmetry of the axion is broken only in 

the far infrared limit of QCD. 

To a good approximation we may summarize the thermal physics as follows. The 

&dependent part of the potential has the form: 

V(d) = c(T)m’cos(N4lf 1 (6.1) 

where c(T) is a smoothly varying function of T with the following possible behaviors: 

1. c(T) is slowly varying with no sign change over the full range of temperatures 
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2. c(T) is slowly varying with a sign change for’ T - m, as in the (2s model); 

3. c(T) is slowly varying with asymptotic zero c(T) -+ 0 as T -t M (as in 2N, for 

N > 2). 

Here we have not addressed the issue of cosmological implications (if any) for the 

formation of structure or other possibile signatures. It seems that the options here are (i) 

to pursue schemes that lead to soft domain walls, or other topological configurations, with 

“thicknesses” of order m;r, which form after the 3°K microwave background decoupling,6 

or (ii) to try to buld a natural version of the Press, Ryden, Spergel” scheme.sg The latter 

has an additional potential fine-tuning problem associated with initial conditions that 

may be remedied in something like the 2s scheme with a sign change in c(T). We also 

mention that other large scale signatures, such as periodic redshifts, might require some 

bizarre version of schemes as discussed here.30 

If the symmetries and dynamics of particle physics are a guide, then it seems likely 

that either ultra-low mass fermions, such as massive neutrinos, or ultra-low mass bosons, 

such as pNGB’s, are the best candidates for potential new cosmological effects. Re- 

stricting attention to such classes of particles is a powerful simplification rather than a 

complication. The existence of such objects implies dramatic new physics at the high- 

est energies, O(f), that lead to phenomena on the largest distance scales (as large as 

f/m’), which are of relevance for cosmology. We thus feel that the general discussion 

of the thermal behavior of pNGB’s given here is an important consideration for future 

cosmological model building efforts. Cosmologists should learn the physics of pNGB’s 

and think about their potential implications in the early and not-so-early Universe. 
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FIGURE CAPTIONS 

Figure 1: Tadpole diagrams used in calculating the effective potential. Dashed lines rep- 

resent bosom and solid lines represent fermions. 

Figure 2: Loops that lead to induced pNGB mass terms in (a) a chiral Lagrangian scheme 

of Eq. (4.8) and (b) the Majorana scheme of Eq. (4.15). 

Figure 3: The zero-temperature potential of the 22 model. 

Figure 4: The temperature-dependent corrections to the Za model. 

Figure 5: The total potential of the Zz model. 

Figure 6: The zero-temperature potential of the 2, model. 

Figure 7: The temperature-dependent corrections to the 5 model. 

Figure 8: The total potential of the 2, model. 
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